The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-

  • A

    $2^{15}$

  • B

    $2^{14}$

  • C

    $2^{16}$

  • D

    $2^8$

Similar Questions

If ${C_r}$ stands for $^n{C_r}$, the sum of the given series $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$, Where $n$ is an even positive integer, is

  • [IIT 1986]

The sum of the series $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ is where $Cr's$ denotes combinatorial coefficient in the expansion of $(1 + x)^n, n \in N$

The sum of the co-efficients of all odd degree terms in the expansion of  ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ 

  • [JEE MAIN 2018]

$\sum_{\mathrm{k}=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2}$ is equal to :

  • [JEE MAIN 2021]

The value of $4 \{^nC_1 + 4 . ^nC_2 + 4^2 . ^nC_3 + ...... + 4^{n - 1}\}$ is :